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TheThe
Fast Fourier TransformFast Fourier Transform

Basic FFT Stuff ThatBasic FFT Stuff That’’s Good to Knows Good to Know

Dave Typinski, Radio Jove Meeting, July 2, 2014, NRAO Green BankDave Typinski, Radio Jove Meeting, July 2, 2014, NRAO Green Bank

Ever wonder how an SDR-14 or Dongle produces the spectra that it does?  Well, now you’re going 
to get a very basic idea of how that’s done.  Everyone here has probably heard of the term “FFT” –
but some may not know what it means.

In this talk, we’ll cover most of the basic ideas that are good to know about FFT’s.  Mostly it’s about 
the main factors that affect what one feeds into an FFT considering what one wants to get out of an 
FFT.
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 Time Domain Time Domain vsvs Frequency Domain Frequency Domain 

 The Fourier TransformThe Fourier Transform

 Digitized SignalsDigitized Signals

 The Discrete Fourier TransformThe Discrete Fourier Transform

 The Fast Fourier TransformThe Fast Fourier Transform

TheThe
Fast Fourier TransformFast Fourier Transform

First, we’ll review some basics – the difference between analog and digital signals, along with the 
analog and digital versions of the Fourier transform.

Then we’ll discuss the fun and interesting FFT stuff.
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Time Domain Time Domain 
vsvs

Frequency DomainFrequency Domain

The first thing we really should understand is the difference between the frequency and time 
domain. 
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Analog Sine Wave
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Here is a plot of a signal in the TIME DOMAIN 

Useful for radio astronomy strip charts, EEG machines, thermostat controllers, and audio tape 
players
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Frequency Domain Representation of the Same Signal
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Here is the same signal in the FREQUENCY DOMAIN

Useful for spectrum analysis– e.g., a radio spectrograph

Ideally, this spike would be infinitely thin for a perfect and infinitely long single-frequency sine wave.  
The finite thickness shown here is a consequence of the imperfect, finite real world.

The question is: how do we get from there to here, from the time domain to the frequency 
domain?

which leads us to....
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The Fourier TransformThe Fourier Transform
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The Fourier TransformThe Fourier Transform

 A mathematical method of finding the frequency A mathematical method of finding the frequency 
domain representation of a time domain domain representation of a time domain 
function.function.

     2j f tX f x t e dt 


 The Fourier Transform Black Box

If you know the mathematical function of a signal – say, sin(x), then you can use the Fourier 
transform find the freq domain function.

How does it work?  Open the box!
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The Fourier TransformThe Fourier Transform

 A mathematical method of finding the frequency A mathematical method of finding the frequency 
domain representation of a time domain domain representation of a time domain 
function.function.

     2j f tX f x t e dt 


 

 
 

where

 frequency domain representation of signal

 time domain representation of signal

 frequency

 time

X f

x t

f

t








Quick, shut it!

The mathematical details are too mind numbing to go into in a half-hour talk.  Nevertheless, here 
they are for the sake of thoroughness. 

It is sufficient to say that this equation can transform a garden variety function like sin(x) into its 
frequency domain representation.
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Analog Signal - 3 sine waves combined
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The Fourier transform works on any real world signal.  This one is made up of three separate sine 
waves with different amplitudes, frequencies, and phases.  For now, don’t worry about how this 
signal is generated – we’ll get to that later.  We can safely treat it as a mathematical abstraction 
whose details aren’t really important at this point.
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Frequency Domain Representation of Same Signal
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When we apply the Fourier transform to the equation for the three-sine-wave signal, we obtain a 
function that produces this plot.

The three visible peaks represent the three distinct sine waves.

The tallest (off the top of the scale) peak at 0 Hz is the DC offset of the signal (more about that 
later).

The amplitude of the peaks represents the amplitudes of the three sine wave components.
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Digitized SignalsDigitized Signals

Before we can get into how to handle real-world signals – instead of mathematically perfect signals 
– we have to know a little about digitized signals.
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Analog Sine Wave
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Here’s our friend, the analog sine wave.
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Digitally Sampled Sine Wave
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And here’s what it looks like to a computer.

The voltage is sampled periodically (as opposed to the continuous nature of the mathematical 
signals discussed previously).

When the data points are plotted, this is what it looks like.

This digital time domain data is the digital representation of a continuous analog signal.
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The Discrete Fourier TransformThe Discrete Fourier Transform
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The Discrete Fourier TransformThe Discrete Fourier Transform

 Abbreviated DFT Abbreviated DFT 

 A way to implement the Fourier Transform with A way to implement the Fourier Transform with 
discrete (i.e., digital) data.discrete (i.e., digital) data.

    
1

2

0

N
j kFnT

n

X kf x nT e 






The DFT Black Box

The analog Fourier transform is all fine and dandy if you have a perfect mathematical 
representation of a signal.  

This never happens with real-world signals.  

We need a way to handle imperfect signals, signals that can’t be conveniently described by a few 
summed sine functions.

The way to do this is to sample the waveform digitally and do the Fourier transform discretely. 
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The Discrete Fourier TransformThe Discrete Fourier Transform

 
 

where

frequency domain representation

 time domain representation

 frequency channel number

 spacing between discrete frequencies

 sample number

 time between samples

 number of samples in 

X kF

x nT

k

F

n

T

N









 the FFT input

   
1

2

0

N
j kFnT
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X kF x nT e 








The gory details. Again, the mathematical details are beyond our purpose here. It is sufficient to say 
that If you have digital data, you can use the DFT to find the freq domain representation of your 
data.  You don’t perform square roots by hand, do you?  Then don’t worry about performing DFT’s
by hand, either.
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Digitally Sampled Sine Wave
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Here’s the digitized sine wave again.
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Frequency Domain Representation of the Digital Data
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And here’s what happens when you run that digitized sine wave through a DFT.  You get the 
frequency domain representation of digital data.  Digital data in, digital data out.

Which leads us to...
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The Fast Fourier TransformThe Fast Fourier Transform

Our purpose of being here today (well, for this presentation, anyway).
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The Fast Fourier TransformThe Fast Fourier Transform

 An FFT is an efficient algorithm for An FFT is an efficient algorithm for 
performing a DFT in a computer; performing a DFT in a computer; 
there are many versionsthere are many versions

We will treat it as yet another We will treat it as yet another 
black boxblack box

 The terms DFT and FFT are often The terms DFT and FFT are often 
used interchangeablyused interchangeably

An FFT is an efficient algorithm that implements the DFT equation in a computer program that will 
execute quickly.

Note the “an FFT” – there are a whole bunch of them.

The code is simple to a computer, but complex by (normal) human standards; we will treat it as yet 
another black box.

The terms DFT and FFT are often used interchangeably, even though they are not quite the same 
thing.  The DFT is the math.  The FFT is a computer program that makes a computer perform the 
necessary calculations.
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f0



 0°

A 1.0 Vp-p

GEN 1

8f0

 –57°

A 0.25 Vp-p

GEN 2

4f0

 +172°

A 0.5 Vp-p

GEN 3

DC Offset +1.5 V

To see how the FFT behaves, let’s come up with a test signal to feed it.

Imagine we have these three signal generators connected through a power combiner.

Each generator has an independent frequency, phase, and amplitude (or gain).

We also have at our disposal a bias tee to provide a DC offset to the final output of this rig.
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Analog Signal - 3 Sine Waves + DC Offset
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Here’s the output of the three summed sig gens, plus some DC offset. The DC offset isn’t visible in 
this plot, but it’s there – as the FFT output will show.
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Sampled Analog Signal  –  3 Sine Waves + DC Offset
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Here is the digital representation of the three sine waves.
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Frequency Domain Representation of Same Signal
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And here is the (digital) output of the FFT.
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Important Factors for FFT UseImportant Factors for FFT Use

 Complex Complex vsvs Real Data Real Data 

 NyquistNyquist and aliasingand aliasing

 Sample rate, Block Size, and RBWSample rate, Block Size, and RBW

Windowing and FFT leakageWindowing and FFT leakage

 DC offsetDC offset

 Amplitude CalibrationAmplitude Calibration
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Complex Complex vsvs Real DataReal Data

Yes, unfortunately, we do have to talk about complex numbers.
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Complex Complex vsvs Real DataReal Data

 The FFT is by nature an operation on complex The FFT is by nature an operation on complex 
numbers; i.e.:numbers; i.e.:

 These contain amplitude These contain amplitude and phaseand phase informationinformation

 We deal here with We deal here with realreal--valued data onlyvalued data only, as , as 
from a single channel signal source from a single channel signal source –– which which 
contains amplitude information contains amplitude information onlyonly

a jb  cos sinA j  jAe 

Complex number notation  rectangular form – polar form – exponential form

all the same thing

From a single channel digitizer, all you get is a real number; you have no phase information

To get complex samples, you need a two channel digitizer with a 90° phase delay between the two 
channels.  This delay must be 90° at all frequencies of interest – so for broadband signals, a simple 
delay line will not work.

In this talk, we work only with real-valued samples; i.e., amplitude information only.
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Complex Complex vsvs Real DataReal Data

a jb  cos sinA j 

jAe 
and via Euler to

Our task here isn’t to dive too deep into complex numbers, but here are a few graphics to show you 
what the rectangular and polar forms represent on the complex plane ---

--- and how you can get from a complex number to its magnitude by way of Pythagoras.  We’ll 
need that when converting the complex-valued output of the FFT into usable real-valued numbers.
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Complex Complex vsvs Real DataReal Data

 When the FFT is provided with realWhen the FFT is provided with real--valued input valued input 
data, it still produces a complexdata, it still produces a complex--valued output, valued output, 
usually of the formusually of the form

 These contain amplitude These contain amplitude and phaseand phase informationinformation

a jb

In this talk, we work only with real-valued samples; i.e., amplitude information only.

An FFT provides complex-valued outputs.

If the input data is real-valued (as opposed to complex), the FFT simply treats the data as being 
complex with a zero-value imaginary part. This makes the phase information in the complex-valued 
output data of questionable value.  There might be a use for it, but I have not discovered one. 
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Complex Complex vsvs Real DataReal Data

 To obtain the amplitude at each frequency, we To obtain the amplitude at each frequency, we 
simply find the vector magnitudes of the complexsimply find the vector magnitudes of the complex--
valued FFT output data points:valued FFT output data points:

2 2A a jb a b   

For our purposes, we simply convert the output to real numbers by finding the vector magnitude of 
the complex output values.  This obtains the amplitude at each frequency.
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Complex Complex vsvs Real DataReal Data

 Excel Excel  Tools Tools  Data Analysis Data Analysis  Fourier AnalysisFourier Analysis

 Excel IMABS() function to find FFT amplitudesExcel IMABS() function to find FFT amplitudes

All the plots in this talk were made using Excel 2003.  Yes, Excel can do FFT analysis and can 
handle complex numbers.

The Fourier Analysis routine in the Data Analysis package creates complex-valued output data 
even when the input data is real-valued.

Excel contains a built-in function, IMABS(), to find the magnitude of a complex number – this is 
what we want so we can plot the amplitude of the FFT output at each frequency.

If your installation of Excel does not have these functions available, you can enable them by going 
to:

Excel menu bar  Tools  Add-Ins...  ensure the entry for Analysis ToolPak is checked.

This Excel file is available for anyone who wants to play with it:

http://www.typnet.net/AJ4CO/FFT/Plots.xls

This presentation is also available:

http://www.typnet.net/AJ4CO/FFT/FFT.pdf
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NyquistNyquist and Aliasingand Aliasing

Now we finally get into the real meat of this presentation – the stuff that’s fun and good to know
about FFT’s.
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NyquistNyquist and Aliasingand Aliasing

 NyquistNyquist::

 Real world:Real world:

2sample rate max in signalf f

2.5sample rate max in signalf f 

Nyquist says that the sample rate must be greater than twice the max freq present in the signal.

If f_max is the highest frequency component within some signal we want to digitally sample, 
Nyquist says that in order to fully capture all the information in the signal, the sample rate must be 
greater than twice f_max.  That’s for an infinitely long input to the FFT.  For real world data sets, the 
sample rate should be greater than about 2.5 times the highest frequency component present in the 
data.  Well, more or less.  Point is you need a bit more than the theoretical minimum of 2 times.

NOTE: if the sample rate isn’t high enough – or if there are components in the signal with 
frequencies greater than half the sample rate, you will get into aliasing, which is bad.  We will 
discuss this next.  

NOTE: Nyquist is not a low pass filter!  If your signal has frequency components greater than half 
the sample rate, run it through a low pass filter before passing it to the FFT. 
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Aliasing
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The green diamonds represent periodic voltage samples.

At this sample rate, the blue trace has 4 data points for one complete cycle – which by Nyquist is way more than enough to 
reconstruct the sine wave.

The orange trace only has less than 1 data point per cycle – which is way less than the 2 data points per cycle demanded by 
Nyquist.

Both of these signals would produce the data points shown here (the green dots).

The question is, when the FFT looks at the time series voltage samples, how can it know which of these two signals was really 
present, orange or blue or both?

It doesn’t!

In general, the FFT output forces the assumption that the lowest frequency wave that fits the bill is the correct wave (even if it isn’t).

This is what is meant by aliasing.

In this example, the orange trace is ALIASED to the lower frequency of the blue trace when the FFT spits out its frequency peaks. 

One way to avoid aliases is to simply increase the sample rate so high that there will be no frequency components in the FFT input 
data that would produce aliases.  This, however, is often impractical.

The other way to avoid aliasing is to run the RF signal through a low pass filter to attenuate frequencies that are too high, the ones 
that would produce aliases in the FFT output.

Most real-world applications use a combination of both methods.

Aliasing is the major reason for the 2.5 times f_max sample rate (as opposed to the 2.0 times f_max Nyquist rate). It’s impossible to 
construct a real world low pass filter to block all the frequencies that are higher than some arbitrary cutoff.  By sampling somewhat 
faster than might be theoretically needed, we avoid some of the aliasing that might occur from frequency components present in the 
real world signal just above half the sample rate.
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FFT Output for Blue Sine Wave Input
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Here’s the FFT output for the blue sine wave.
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FFT Output for Orange Sine Wave Input
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Here’s the FFT output for the orange sine wave.  Note that it is the same as the FFT output for the 
blue sine wave.  This is aliasing in action.
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Sample Rate,Sample Rate,
Block Size,Block Size,
and RBWand RBW
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 An FFT is recordAn FFT is record--based; it operates on based; it operates on NN
input samples at a time input samples at a time 

 NN is also known as the FFT block sizeis also known as the FFT block size

 NN is usually a power of 2 (but not always)is usually a power of 2 (but not always)

Sample Rate, Block Size, and RBWSample Rate, Block Size, and RBW

For example, Excel requires N to be an integer power of 2.  Mathematica, on the other hand, will 
accept a block size of any length.
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 An FFT produces An FFT produces NN output points in the output points in the 
frequency domain for frequency domain for NN input samples in input samples in 
the time domainthe time domain

 For realFor real--valued input data, only the first valued input data, only the first 
((NN/2)+1 output points are unique. The /2)+1 output points are unique. The 
output spectrum is output spectrum is foldedfolded at the FFT at the FFT 
output frequency bin representing half the output frequency bin representing half the 
sample rate. sample rate. 

Sample Rate, Block Size, and RBWSample Rate, Block Size, and RBW
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Sampled Analog Signal  –  3 Sine Waves + DC Offset
FFT Input, N = 128 data points
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Here’s our three-sine-wave signal again.
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Frequency Domain Representation of Same Signal
FFT Output, All 128 output data points
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Here’s the full FFT output.

Only the first (N/2)+1 output points are useful. (128/2)+1 = 65.  The data is folded at bin # 64.
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Frequency Domain Representation of Same Signal
FFT Output, first 65 data points (bins 0 through 64)
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Here are the first (N/2)+1 = 65 output points, bins 0 through 64.  This is the useful portion of the 
FFT output.

There’s no reason one could not use the upper half of the FFT output instead – assuming one 
reversed their order to put the spectrum back in the right direction. 

Common practice is to simply discard the upper half of the FFT output and use the lower half, since 
the lower half’s elements are already in the right order, frequency-wise.
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 Resolution Bandwidth (RBW) is the spacing Resolution Bandwidth (RBW) is the spacing 
between the discrete frequencies in the between the discrete frequencies in the NN
elements of the FFT output arrayelements of the FFT output array

1 Sample rate
RBW

FFT Block duration N
 

FFT block duration
Sample rate

N


Sample Rate, Block Size, and RBWSample Rate, Block Size, and RBW



Jove 2014 July 2, 2014

44

Frequency Domain Representation of Same Signal
FFT Output, first 65 data points (bins 0 through 64)
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Here again are the first (N/2)+1 output points, bins 0 through 64 of the FFT for the three-sine-wave signal.

The question is, how far apart in frequency are these data points?

We know that N = 128 input data points.

If we say that the sample rate is 10 MHz, then it follows that
RBW = (sample rate)/N = 10MHz/128 = 78.125 kHz

Element n of the N-element output array has a frequency of n(RBW).
NOTE: the first element of the output array is element zero, not element one!
So, the first FFT output bin is always 0(RBW) = 0 Hz.  (This is where the DC offset lives.)

In this example, the element #64 frequency is 64(78.125 Hz) = 5 MHz.
Recall that 5 MHz is
a) the folding frequency of the FFT output array, and
b) the max frequency you can usefully represent with a 10 MHz sample rate (when you’re using real-valued voltage 
samples).

Notice that the “peaks” appears a little asymmetrical – this happens when:
A) the exact frequency of the time series data (i.e., the sine waves) don’t fall exactly in the center of one FFT output 
bin.  In other words, the power in the frequency domain is shared among a couple neighboring bins.  This can be 
mitigated somewhat by using a longer FFT block size – i.e., a smaller RBW – at the expense of time resolution (or 
shelling out for a faster digitizer if you want to keep the same time resolution).  No free lunches!
and
B) the signal doesn’t repeat with a period of exactly one FFT block.  We’ll talk about this in just a bit. 
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Sample Rate, Block Size, and RBWSample Rate, Block Size, and RBW

 Real World Example (from the TWB receiver)Real World Example (from the TWB receiver)
 Sample rate = 10 MHzSample rate = 10 MHz

 FFT block size = FFT block size = NN = 2,048= 2,048

 Therefore:Therefore:
 FFT block duration = 2,048 / 10MHz = 204.8 FFT block duration = 2,048 / 10MHz = 204.8 ss

 RBW = 1 / 204.8 RBW = 1 / 204.8 s = 10 MHz / 2,048 = 4.883 kHzs = 10 MHz / 2,048 = 4.883 kHz

 Folding frequency = 10 MHz / 2 = 5 MHzFolding frequency = 10 MHz / 2 = 5 MHz

 Unique output bins = (N/2)+1 = 1,025 Unique output bins = (N/2)+1 = 1,025 
(bins 0 through 1,024)(bins 0 through 1,024)

1 Sample rate
RBW

FFT Block duration N
 FFT block duration

Sample rate

N


Here’s a real-world example; this is what we used in the tunable wideband receiver’s digitizer and 
data analysis software.
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Windowing and FFT LeakageWindowing and FFT Leakage

An attempt to deal with real world imperfections.



Jove 2014 July 2, 2014

47

Windowing and FFT LeakageWindowing and FFT Leakage

 DFT DFT assumesassumes an infinitely long periodic an infinitely long periodic 
waveformwaveform

 Can lead to Can lead to leakageleakage if a if a windowwindow is not is not 
usedused

More important for deterministic signals More important for deterministic signals 
(e.g., an oscillator(e.g., an oscillator’’s sine wave output)s sine wave output)

 Not so important for noise signalsNot so important for noise signals
(e.g., cosmic radio emission)(e.g., cosmic radio emission)

The DFT – and by extension, the FFT – assumes that the FFT block of time series data (the input 
record) repeats infinitely in time.  This often leads to visible effects in the FFT output.

The best way to see this is by example.
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FFT Input, N  = 32
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Here is a digitized signal the happens to fit perfectly in the FFT block.  Two blocks are shown here 
(total of 64 data points).  Note that the sine wave moves smoothly from one block to the next.
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FFT Input, N  = 32
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Here is a sine wave that does not fit nicely into one FFT block.
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FFT Input, N  = 32
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When the FFT is performed on the first input block, remember that the FFT assumes the signal in 
that block repeats ad infinitum.  So, to the FFT, the signal actually looks like this, with the small 
discontinuity between the two blocks of data.  This can introduce “leakage” into the FFT output.  
That is some of the spectral power “leaks” into multiple output bins.
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Digitally Sampled Sine Wave, N  = 128
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Here’s a sine wave that doesn’t quite fit an FFT block of 128 data points.
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Hanning Window, N  = 128

Input Record
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        

Remember the discontinuity between the two sine waves?  Well, if we multiply each FFT block by a 
window to bring the ends of the block to zero, then the signal can repeat endlessly without 
discontinuities – because the end points are all forced to be zeroes.

This particular window is called the Hanning window.

There are many other windows.  The determination of which window to use for what application is 
much more a form of art than science. I think there are also a few tea leaves involved.
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Sine Wave Multiplied by Hanning Window

Input Record

V
o

lt
a

g
e

Here’s the sine wave FFT block after the window has been applied (the sine wave’s data points are 
multiplied by the window’s data points, one by one).
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Frequency Domain Representation of the Digital Data, Rectangular Window
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Here’s the FFT output of the sine wave with no “windowing” performed – which is known as a 
rectangular window, because apparently it just had to have a name.
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Frequency Domain Representation of the Digital Data, Hanning Window
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Here’s the FFT output of the windowed sine wave.  The overall signal level is lower due to the fact 
that the window attenuates some of the signal.

The important part, though, is that the window changes the shape of the peak and the level of the 
sidebands.



Jove 2014 July 2, 2014

56

Frequency Domain Representation of the Digital Data, Window Effects
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Hanning Window

Here’s a comparison of the rectangular window (Orange) with the Hanning window (blue), both 
applied to the original sine wave time series data.

In this particular case, the width of the peak stays about the same – but the sidebands have gone 
way down with the Hanning window – more so than can be accounted for by the window’s 
attenuation alone.
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FFT Input, N  = 32, Noise with Gaussian Distribution (i.e., cosmic noise)
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But what about noise?  We don’t receive nice smooth sine waves from cosmic radio sources.  Our
“signals” of interest are themselves noise.

What happens when we repeat the first 32 samples ad infinitum?  Will it create a discontinuity?
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FFT Input, N  = 32, Noise with Gaussian Distribution (i.e., cosmic noise)
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Where is the discontinuity?  We can’t tell, because the signal itself is noise, which is by definition 
random.
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Digitally Sampled Gaussian Noise, N  = 128, Rectangular Window
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Cosmic radio noise has a Gaussian distribution.  Here’s a 128 point FFT block of Gaussian noise.  
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Frequency Domain Representation of the Noise Samples, Rectangular Window
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Here’s the FFT output.
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Digitally Sampled Gaussian Noise, N  = 128, Hanning Window
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Here’s the same noise after application of the Hanning window.
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Frequency Domain Representation of the Noise Samples, Hanning Window
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And here’s the FFT output.  
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Frequency Domain Representation of Gaussian Noise, Window Effects
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Here are both FFT outputs for the noise input.  The windowed version is slightly lower in amplitude 
as one would expect.  Other than that, there is no meaningful difference – because noise is, well, 
random.
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DC OffsetDC Offset
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DC OffsetDC Offset

 Any DC offset in the input data is provided Any DC offset in the input data is provided 
by the FFT in the first element of the by the FFT in the first element of the 
output array output array –– the 0 Hz frequency binthe 0 Hz frequency bin

 Ideally, DC offset does not change the Ideally, DC offset does not change the 
amplitude of any other FFT output array amplitude of any other FFT output array 
elementelement
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Sampled Analog Signal  –  3 Sine Waves + DC Offset
FFT Input, N = 128 data points
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Here’s the same old three-sine-wave signal... again...
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Frequency Domain Representation of 3 Sine Wave Signal

Frequency

V
o

lt
a

g
e

DC Offset in FFT output bin # 0

ANd here’s where the DC offset shows up.  We couldn’t see it on the other plots because it was off 
the chart, scale high.  This plot has bee rescaled to allow the DC offset to show up as an actual 
data point.
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Amplitude CalibrationAmplitude Calibration

Finally, the last section!
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Amplitude CalibrationAmplitude Calibration

 Just like any other instrument, the Just like any other instrument, the 
amplitude of the FFT must be calibrated amplitude of the FFT must be calibrated 
against a known standardagainst a known standard

 Common to Common to sqauresqaure the voltage samples the voltage samples 
and divide by 50 ohms to convert and divide by 50 ohms to convert 
voltage to powervoltage to power

 Other conversion factors can be applied Other conversion factors can be applied 
to calibrate in to calibrate in dBmdBm relative to a relative to a 
standardstandard
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References for Further ReadingReferences for Further Reading

 Witte, R., Spectrum and Network Measurements, Prentice-
Hall (1991).

 Lyons, R., Understanding Digital Signal Processing, 
Addison Wesley Longman (1997).

 Frerking, M., Digital Signal Processing in Communication 
Systems, Van Nostrand (1994).

 Who is Fourier?, Transnational College of LEX (1995).

These books are outstanding; very highly recommended.

Witte, R., Spectrum and Network Measurements, Prentice-Hall (1991).

Lyons, R., Understanding Digital Signal Processing, Addison Wesley Longman (1997).

Frerking, M., Digital Signal Processing in Communication Systems, Van Nostrand (1994).

Who is Fourier?, Transnational College of LEX (1995).


